Bioalgal Energy (1)	Ye	ear	1		Ye	ear	2		Ye	ar	3		Ye	ear	4		Ye	ar	5	
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
GOAL 1: OPTIMIZE	BIO	LOO	GIC	AL	PRO	DDL	ЈСТ	τινι	Y											
Outdoor Algal P	erfo	orma	anc	e (N	IMS	U , I	UNN	/I)												
Evaluate Galdieria strains																				
Reassess biomass and lipid productivity phenotypes of strains in cultivation																				
Study the responses of algae through time and physical location																				
Micro-Photok	oiore	act	ors	(NI	ИC,	UN	M)													
Use hydrogels to encapsulate very high-density microalgal cells along with solid-state devices and/or fluorescent proteins																				
Address optimization of giant quantum dot cell energy transfer																				
Characterize mircro-encapsulated algal-growth and biomass partitioning																				
Compare photosynthetic function between bacteria and algae in silica gel matrices	l																			
Compare biomass accumulation between bacterial and algae in multiple gel matrices																				
Algal Community	Eco	log	y (l	JNN	I, SI	NL,	NM	SU)												
Evaluate how diversity and trophic interactions influence lipid production																				
Measure photosynthetic function in natural bacterial and algal communities																				
GOAL 2: IMPROV	ECL	JLTI	IVA ⁻	ΓΙΟ	N P	RA	стю	CES	;											
Outdoor	Cult	ivat	tion	(N	MSI	J)														
Analyze Nannochloropsis (CCMP1776) and a fast-growing Chlorella strain for winter growth in the photobioreators																				
Evaluate potential for using municipal and agricultural wastewaters in the photobioreactors																				
Process Eng	inee	ering	g (l	JNN	1, N	MS	U)													
Evaluate effects of lipids on biomass density as a potential selectable characteristic																				
Develop agent-based models of microbes with storage products in photobioreactors																				
Access how industrial, municipal, and agricultural wastewater affects system function																				
GOAL 3: ENHANCE ENERGY RETURN C	N IN	IVE	STI	MEN	NT A	AND	w/	AST	EW/	ATE	RU	JTI	LIZA	ΑΤΙΟ	DN					
Extr	actio	on (NM	SU)															
Evaluate hydrothermal, microwave-assisted, and supercritical processing concepts for chemical extraction, fuel conversion.																				
and easy nutrient recycling from process waste streams and inorganic carbon																				
Proc	essi	ing	(NN	ISU)															
Test hydrothermal processing technology on Nannochloropsis, Chlorella, Galdieria and also ecologically stable strain mixtures																				
Con	vers	sion	UI)	NM))								-							
Investigate transition-metal catalyzed decarboxylation pro- cesses tailored to de-oxygenation of biocrude oils in order to																				
meet ASTM fuel standards																				
Wastewate	er Ut	tiliza	atio	n (I	ENN	/U)				r										
Test baseline performance of turf scrubber											$ \downarrow$					Щ				
Characterize wastewater for turf scrubber	1	1																		

Complete

Ahead of schedule

Deleted or changed

Unreported

KEY

On track

Behind schedule

Sioalgal Energy (1) Year 1 Year 2 Year 3 Year 4 Year 5 : June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May 1 2 3 4 1 2 </th <th></th> <th>On track</th> <th>Behind schedule</th> <th>Complete</th> <th></th> <th>Ahe</th> <th>ead</th> <th>of s</th> <th>sche</th> <th>dule</th> <th>е</th> <th></th> <th>D</th> <th>elet</th> <th>ed</th> <th>or c</th> <th>han</th> <th>ged</th> <th></th> <th>U</th> <th>Inre</th> <th>port</th> <th>ed</th>		On track	Behind schedule	Complete		Ahe	ead	of s	sche	dule	е		D	elet	ed	or c	han	ged		U	Inre	port	ed
: June-Aug; 2: Sept-Nor, 3: Dec-Feb; 4: Mar-May 1 2 3 4 1 2 3 <	Bioal	gal Energy	[,] (1)		Ye	ear	1		Ye	ar	2		Ye	ar	3		Ye	ar	4		Ye	ar	5
Test turf scrubber with wastewater, and analyze nutrient and BOD removal Image: CROSS-CUTTING INFRASTRUCTURE CROSS-CUTTING INFRASTRUCTURE NMSU's Chemical Analysis and Instrumental Laboratory Provide Overall Project Support (NMSU) Provide contralized analytic processing and training Image: CROSS-CUTTING INFRASTRUCTURE Develop biological standards (new strains as needed in out years) Image: CROSS-CUTTING INFRASTRUCTURE Develop Standard Operating Procedures for algal sampling and lipid quantification Image: CROSS-CUTTING INFRASTRUCTURE Purchase and Install Equipment (NMSU) Image: CROSS-CUTTING INFRASTRUCTURE Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Image: CROSS-CUTTING INFRASTRUCTURE Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation System floatation (DAF)) Image: CROSS-CUTTING INFRASTRUCTURE Purchase and Install Equipment (ENMU) Image: CROSS-CUTICURE Image: CROSS-CUTICURE Purchase and Install Equipment (ENMU) Image: CROSS-CUTICURE Image: CROSS-CUTICURE Purchase and Install Equipment (ENMU) Image: CROSS-CUTICURE Image: CROSS-CUTICURE Purchase and Install Equipment (ENMU) Image: CROSS-CUTICURE Image: CROSS-CUTICURE Provide Overall Project Support Image: CROSS-CUTICURE <	: June-	-Aug; 2: Sept-No	v; 3: Dec-Feb; 4: Mar-May		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3
CROSS-CUTTING INFRASTRUCTURE NMSU's Chemical Analysis and Instrumental Laboratory Provide Overall Project Support (NMSU) Provide centralized analytic processing and training Image: Colspan="6">Image: Colspan="6" Colspa	Test t	urf scrubber w	ith wastewater, and ana	lyze nutrient and BOD removal																			
NMSU's Chemical Analysis and Instrumental Laboratory Provide Overall Project Support (NMSU) Provide centralized analytic processing and training Image: Colspan="6">Image: Colspan="6" Colspan="6">Image: Colspan="6" Colspan="6">Image: Colspan="6" Colspa=""6" Colspa=""6" Colspa=""6" Colspan="6" Colspan="6" Colspan="6"				CROSS-CUTT	NG	INF	RA	STF	ิรบด	TU	RE												
Provide Coverall Project Support (NMSU) Provide centralized analytic processing and training Image: Constraint of the constraint o			NMSU's	Chemical Analy	/sis	and	d In	stru	ıme	nta	l La	bo	rato	ry									
Provide centralized analytic processing and training Develop biological standards (new strains as needed in out years) Develop Standard Operating Procedures for algal sampling and lipid quantification Purchase and Install Equipment (NMSU) Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) (1-L, 0-400 C, 0-400 bar) Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation System (Evodos, Origin Oil or dissolved air floatation (DAF)) Harvesting System (Evodos, Origin Oil or dissolved air floatation (DAF)) Purchase and Install Equipment (ENMU) Purchase and Install Equipment (ENMU) <td></td> <td></td> <td></td> <td>Provide Overal</td> <td>Pro</td> <td>oject</td> <td>t Su</td> <td>рро</td> <td>ort (N</td> <td>NMS</td> <td>SU)</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td>				Provide Overal	Pro	oject	t Su	рро	ort (N	NMS	SU)	_	_	_		_	_	_	_	_	_	_	
Develop biological standards (new strains as needed in out years)		Provide ce	ntralized analytic proces	sing and training																			
Develop Standard Operating Procedures for algal sampling and lipid quantification Purchase and Install Equipment (NMSU) Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Image: Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation Systems Image: Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Harvesting System (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow hydrothermal reaction system (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow hydrothermal reaction system (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow hydrothermal reaction system (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow hydrothermal reaction system (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow hydrothermal reaction system (Evodos flow hydrothermal reaction system	Γ	Develop biolog	ical standards (new stra	ins as needed in out years)																			
Purchase and Install Equipment (NMSU) Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation Systems Harvesting System (Evodos, Origin Oil or dissolved air floatation (DAF)) Purchase and Install Equipment (ENMU) Algae turf scrubber Small-scale Experimental Ecological Design Facility (SEED) (UNM) Provide Overall Project Support High frequency chemical analyses Flexible cultivation environments	Deve	elop Standard	Operating Procedures f and li	or algal sampling pid quantification																			
Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Image: Continuous flow hydrothermal reaction system (1-L, 0-400 C, 0-400 bar) Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation Systems Image: Continuous flow hydrothermal reaction flow (1-L, 0-400 C, 0-400 bar) Harvesting System (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Continuous flow (1-L, 0-400 C, 0-400 bar) Purchase and Install Equipment (ENMU) Algae turf scrubber Image: Continuous flow (1-L, 0-400 C, 0-400 bar) Small-scale Experimental Ecological Design Facility (SEED) (UNM) Provide Overall Project Support High frequency chemical analyses Image: Content flow Flexible cultivation environments Image: Content flow				Purchase and I	nsta	all E	quip	ome	nt (I	NMS	SU)												
Components, fabrication and utility modification costs for 24 Outdoor Algae Cultivation Systems Image: Cultiva		Contir	nuous flow hydrotherma (1-L, 0-4	l reaction system 00 C, 0-400 bar)																			
Harvesting System (Evodos, Origin Oil or dissolved air floatation (DAF)) Image: Im	C	omponents, fa	brication and utility mod 24 Outdoor Algae Cu	ification costs for Itivation Systems																			
Purchase and Install Equipment (ENMU) Algae turf scrubber Image: Colspan="5">Image: Colspan="5" Algae turf scrubber Image: Colspan="5">Image: Colspan="5">Image: Colspan="5">Image: Colspan="5">Image: Colspan="5">Image: Colspan="5">Image: Colspan="5" Image: Colspa="5" Image: Colspan="5" Image: Colspan="5" Image: Colspan="5" Imag		Harvesting Sy	rstem (Evodos, Origin O	il or dissolved air floatation (DAF))																			
Algae turf scrubber Image: Color of the color of t				Purchase and I	nsta	all E	quip	ome	nt (I	ENN	۸U)												
Small-scale Experimental Ecological Design Facility (SEED) (UNM) Provide Overall Project Support High frequency chemical analyses Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" High frequency chemical analyses Image: Colspan="2">Image: Colspan="2" Flexible cultivation environments Image: Colspan="2">Image: Colspan="2"			Al	gae turf scrubber																			
Provide Overall Project Support High frequency chemical analyses Image: Colspan="2">Image: Colspan="2" Image: C			Experimental Ec	olo	gica	l D	esig	yn F	aci	lity	(SE	ED)) (U	NM)								
High frequency chemical analyses Image: Constraint of the second secon				Provide Ov	era	ll Pr	ojec	ct Si	upp	ort			_	_	-			_	_	_		_	
Flexible cultivation environments			High frequency cl	nemical analyses																			
			Flexible cultivati	on environments		<u> </u>																	

Purchase and Inst	all E	Iqui	pme	ent	(UN	IM,	NM	C)				
Waters UPC2												
Water Fraction Collector & HP/Agileat 350												
Digital compound microscope												
Photobioreactors												
GC/MS												

MIMS												
Isotopic laser												
Hyperspectral imaging upgrades												
Photochemical reactor												
Pe	rsor	nnel	(Al	I)								
Form collaborations in NM among groups working on algal cultivation and wastewater management												
Develop Mentoring and Training Plan												
Hire new faculty in engineering												
Hire research technician to run UPC2												
UNM/NMC student support (1 per year)												
UNM student support (2.5 per year)												
NMSU Faculty hire												
NMSU student hires												
ENMU entry-level technician hire												
ENMU student hire												

KEY	On track	Behind schedule	Com	plet	e		Ahea	ad of	fsch	nedi	ule		De	lete	d or	cha	ange	ed		Uni	repor	ted
													1									
	Solar En	ergy (2)		Ye	ar 1		Y	ear	2		Yea	ar 3		Ye	ear	4		Ye	ear	5		
	1: June-Aug;	; 2: Sept-Nov; 3: Dec-Feb; 4: M	lar-May	1	2 3	3 4	4 1	2	3	4	1	2 3	4	1	2	3	4	1	2	3	4	
				1. 6	Build	so	lar te	am	(All))												
		Hire/train graduate stu	udents																			
		Identify team member at I	NMSU																			
	Н	lire physical or inorganic cl	hemist																			
	Incorporat	te new team member's exp (NMHU, N	oertise IMSU)																			
		2. P	urchas	e ar	nd ins	stal	l equ	iipm	ent	(NI	MT, U	NM)										
		MCD Magnet S	System																	\Box		
		Time Resolved Spectro	oscopy																			
		Fluorolog spectrophoto	ometer																			
		Raman Micro	oscopy																			
		3. Use nanoparticle Z	ZnS to	cata	lyze i	red	uctio	on o	f CC)2 (NMT,	UNI	N , N	мн	U, N	MS	U)					
	Obtain _I	preliminary data on ZnS N microp	Ps vs. article																			
	Explore a	nd develop dye photosens for ZnS ca	sitizers talysts																			
	Investi	igate semiconductor catalyst	ts MoS																			
	Obtain s	spectroscopic characteriza NP ca	tion of talysts																			
		4. Develop stable BH	Js fron	n a s	single	e po	olym	er s	yste	m (, UN	M, N	ΜН	U, N	IMS	SU)					
	Synthesi	is of new polymeric system characteri	ns and ization			Τ																
	Incor	rporate non-covalent guest porp	ts/C60 hyrins			Τ																
		Spectroscopic characteriz fluorescence li	ation / ifetime			Τ																
		9. Connections b	oetwee	n EF	SCo	R t	eam	s (NI	МΤ, \$	SFI	, UNI	M, N	ини	I, NI	ทรเ	J)						
	Outreach	n to K-12 students via SFI/	GUTC																			
	Explore	e collaboration w/ geoscien zeolite carbon c	tist for apture																			
	Explore	e collaboration w/ biologist bioalgal carbon c	t using apture																			

KEΥ	On track	Behind schedule	Com	ple	te		A	hea	d of	scł	ned	ule			De	eteo	d or	cha	ange	ed		Unr	repor
	Osmotic	Power (3)		Ye	ear	1		Ye	ar	2		Ye	ear	3		Ye	ar	4		Ye	ear	5	
	1: June-Aug;	2: Sept-Nov; 3: Dec-Feb; 4: M	/ar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
		Purcha	ase and	ins	stall	equ	Jipr	nen	t (m	najo	or p	ieco	es)	(NN	IT)								
		Membrane Osmo	ometer																				
	Pressure R	Retarded Osmosis (PRO) S	System																				
		SEN	M-EDS																				
						Re	sea	arch	1						-						. 		
	Identi	fy potential sources of pro water (NMT,	oduced , UNM)																				
	Characte	erize the compositions of s waters (NMSU, E	source ENMU)																				
	Evaluate	the achievable trans-men pressures (NMT,	nbrane , UNM)																				
	As membran	sess the design requirements and membrane module	ents of es (All)																				
	Design, co	nstruct, and modify bench osmotic power system	n-scale ns (All)																			Π	
	Deve mem	lop new thin film composite branes and modules to ma power generation (NMT,	e (TFC) aximize , UNM)																			Π	
	Investig and miti	gate the occurrence, preve gation of membrane foulir	ention, ng (All)																				
	Perform co	ost-benefit analysis (NMT,	, UNM)																				
						Ре	rso	nne	el														
	Develop N	Mentoring and Training Pla	an (All)																				
	Hir	e/train graduate students	(NMT)																				
		Hire/train post-docs	(NMT)																				
	Hire	e/train research chemist (N	NMSU)																				

ΚEΥ		On track		Behind schedule	Corr	ple	te		A	hea	d of	sc	hed	ule			Del	lete	d or	cha	ange	ed		Uni	ерс	
		Uranium	ı (4)			Ye	ear	1		Ye	ar	2		Ye	ar	3		Ye	ear	4		Ye	ar	5	
		1: June-Aug;	; 2: 8	Sept-Nov; 3: Dec-Feb; 4	: Mar-N	Лау	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
				Р	urcha	se a	and	ins	tal	eq	uipr	nen	t (n	najo	or p	iece	es)				<u> </u>	<u> </u>				
				ICP-M	1S (NN	/T)														_						
		Міс	crow	ave digestion syste		/1) /T)									_							\vdash				_
						/11) /T)															-	\vdash				_
				HPLC Upgrade		/11)			D		arek															_
				Plan for CI n	oode (R	ese	arci									<u> </u>	<u> </u>					
		Develop ai sensiti	nd a ve r	pply methodologies neasurement of U s (NM	for rap peciat	oid, ion IM)																				
		Examine th monome so	he k eric a oluti	inetic stability of bio and colloidal U(IV) s on under anoxic and conditions (UN	-reduc pecies d subc	ced s in oxic //T)																				
	^	Examine on chem	the nica	effects of microbial I speciation and mol and related conta	activit bility o amina	ies f U nts																				
		Develop a	and	test novel technolog de-mobilization (UN	rU //T)																					
		Locate groundw	e an /atei	d characterize a site r contamination (UN	e to stu M, NN	udy /IT)																				
		Assess, c situ mining plume	delin g im es fr	eate, and predict po pacts as well as con om legacy mining op (UN	otentia Itamin peratio IM, NN	l in ant ons /IT)																				
		Perform fi of subs	eld- surfa	scale mapping and nace U mobility at the (UN	model field s M, NN	ing site /IT)																				
		Evaluate th and ani lands of	ust arid IM)																							
		Develop co Labs a	nal /IT)																							
		Education students	ajo IM)																							
							-		Pe	erso	nne	el		,			,					,,			,	
		Dev	velo	p Mentoring and Trai	lan																					
		Hire/train	i gra	iduate students (UN	M, NN	<i>Ι</i> Τ)																				

On track

Deleted or changed

Unreported

Geothermal Energy (5)	Y	ear	1		Y	ear	2		Ye	ear	3		Y	ear	4		Ye	ear	5	
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Person	nne	l an	d c	olla	bor	atic	ons													
Develop Mentoring and Training Plan																				
Recruit students for yrs. 2 & 4 (UNM, NMT)																				
Develop recruiting brochure (UNM, NMT)																				
Explore wider collaborations across institutions and tribes (UNM, NMT)																				
Develop partnerships with private sector, governmental agencies, and national labs (NMT, UNM)																				
Hire/train graduate students																				
Develop outreach and educational materials (NMT, UNM)																				
Engage with Geothermal Resources Council (NMT, UNM)																				
Develop IWGs for geothermal (UNM, NMT)												Γ		Г	Γ					
Purchase and i	nst	all e	equ	ipm	ent	(m	ajor	, bie	eces	5)										
Magneto-telluric system (NMT)																				
Visualization work stations (NMT)														1						
Autonomous sensors/field mass spectrometers (UNM)																				
		Re	sea	rch																
Select geothermal systems in New Mexico for analysis (NMT, UNM)																				
Characterize the compositions of waters and gases in these systems using published and new data (UNM, NMT)																				
Assess influence of geothermal systems and sys- tems development on potable water quality (UNM)																				
Measure the magneto-telluric signature and resistivi- ty of the subsurface below the targeted areas (NMT)																				
Determine the temperature of these systems using published and new data and develop new tech- niques to determine temperatures (NMT, UNM)																				
Determine radiometric dates of geothermal deposits and cosmogenic dates of fault systems to evaluate the longevity of geothermal systems (UNM, NMT)																				
Add new data to existing databases and link to other databases (NMT)																				
Make 2D geologic cross sections, 3D geologic block diagrams, and 2D and 3D conceptual model system (NMT, UNM)																				
Develop high performance 2D and 3D hydrothermal computer models (NMT, UNM)																				
Model sustainability of geothermal production over several decades (NMT, UNM)																				
Evaluate & categorize thermal energy in place and potential power sources (NMT, UNM)																				

On track	Behind schedule	Con	nple	te		Α	hea	d of	fsch	ned	ule			Del	eteo	d or	cha	ange	ed		Un	repo	ortec
																			_			_	
Social &	Natural Science Ne	xus (6)	Y	ear	1		Ye	ear	2		Ye	ar	3		Ye	ar	4		Ye	ear	5		
1: June-Aug;	2: Sept-Nov; 3: Dec-Feb; 4:	Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
Build an SD and natura socioe	infrastructure to integra sciences by developing conomic and water budg	ite social g energy, gets (All)																					
Create an	infrastructure to collect human perceptions dat	and use a (UNM)																					
Develop p	data to fill data gaps or perceptions and attitude	n human s (UNM)																					
E statewide on attite	Develop and administer survey to provide base udes about energy/wate	an initial line data er issues																					
Develop a that is linkat science	statewide dynamic wate ole through the SD mode and social data models	r budget I to other (NMSU)																					
Merge e data to e that res access wh	existing and new water i stablish dynamic water searchers and policyma en they need integrated status water budgets	resource budgets kers can d current (NMSU)																					
Devel disciplines, parate field designed	op statewide model that incorporating modules is into a decision suppor with flexible scale and fo	crosses from dis- t system ocus (All)																					
Assemb modeling v for resea	le team for data integra workshops with the CI to arch team meetings and data reposito	ition and eam and visits to ries (All)																					
Develop da including leg	tabase of existing data g socioeconomic, water gal, environmental, and infrastruc	sources, , energy, physical ture (All)																					
Reach out to ute to the m our p	o state agencies that car odel's relevance, the utili roducts, and future rese	n contrib- ization of arch (All)																					
Collat teams to and integrat	porate across EPSCoR integrate research into c ted decision support sys	research latabase tem (All)																					
Enhanc	e collaboration with polic and stakehole	ymakers ders (All)																					
Deve	op Mentoring and Train	ing Plan																					
Hire/train g	aduate students (UNM	, NMSU)																					
	Hire/train post-docs	(NMSU)																					l

Allead of schedule Deleted of changed Offenere	KEY	On track	Behind schedule	Complete	Ahead of schedule	Deleted or changed		Unreported
--	-----	----------	-----------------	----------	-------------------	--------------------	--	------------

Diversity (7)	Ye	ear	1		Ye	ear	2		Ye	ear	3		Ye	ear	4		Ye	ar	5	
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Hire Diversity Coordinator																				
Complete researcher mentoring plans																				
Diversity IWG																				
Project leadership attends SACNAS/AISES																				
Attend NM LSAMP Student Research Conference																				
Gather project diversity data; report at All Hands Meeting																				

Workforce Development (8)	Ye	ear	1		Ye	ear	2		Ye	ear	3		Ye	ear	4		Ye	ear	5	
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
GUTC Curriculum Units																				
GUTC Summer Professional Development Workshop (5 days)																				
GUTC Fall Professional Development Workshop (1 day)																				
GUTC Spring Professional Development Workshop (1 day)																				
GUTC Club meeting (13 weeks per semester)																				
Career Connections Conferences																				
Student Roundtables																				
STEMAP web materials developed																				
STEMAP recruitment at PUIs																				
STEMAP summer program																				
STEMAP quarterly webinars																				
Externship program guidelines/application																				
Recruit & select externship students/labs																				
5 graduate students placed in externships																				
Post-doc workshop (4 days)																				
PUI Faculty Leadership and PD Institute																				
Online folow-up learning sessions for PUI faculty																				
Form four colleague research teams (CC/ Univ. Researchers)																				
Training for Undergraduate Faculty Institutional Coordinators (FIC)																				
Create/update ICCE curriculum																				
Host ICCE																				
Host ICCE Fellows in New Mexico																				
On-going ICCE Fellows support/mentoring																				

KEY	On track	Behind schedule	Com	plet	te		Ahead of schedule						Deleted or changed							Unreport			
	Cyberint	frastructure (9)		Ye	ar	1		Ye	ar	2		Ye	ar	3		Ye	ar	4		Ye	ar	5	
	1: June-Aua:	2: Sept-Nov: 3: Dec-Feb: 4: Ma	r-Mav	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	Deve	lop Mentoring and Training	Plan	·	_				-	Ū		·	-	-			_	•			-	-	
		Integra	ted Da	ata S	Sto	rage	e ar	nd N	lod	elin	g P	orta	ı al (l	JNN	/1)								
	Develop an	alytic services and client inter	faces										Ì		,								
	Provide ne	w capabilities for socioecor modeling and ana	iomic alysis																				
	Ongoing	data acquisition as request support project rese	ed to earch																				
	Expand	the systems analytic capab	ilities																				
	Docun	nent data products and inte them into p	grate portal																				
	Include	an education resources se	ection																				
	Evolve th	ne current XML document-b data documentation n	ased nodel																				
	Modify IS	component services that de O metadata (Semantic-ena	eliver bled)																				
		Expanding Our Interope	rabilit	t y w	/ith	Nat	ion	al a	nd	Inte	erna	itio	nal	Data	a N	etw	ork	s (U	INM)			
	Cont	inue the Western Consortiu Working G	im CI Group																				
	Expand s	upport for web service prot used by netw	ocols vorks																				
	Connect	to external geospacial platf	orms																				
	Re inte	gister project data products ernational and national regi	s with stries																				
	Add pr	oject data products to Lobo	Vault																				
		Er	hanci	ing	Тос	ols f	or (Coll	abc	orat	ion	(UN	IM)										
	Develo	p next generation data-cen collaboration capab	tered ilities																				
	Suppor	rt an online lab notebook sy	stem																				

KEY	On track	Behind schedule		Complete		Ahead of schedule		Deleted or changed		Unreported
-----	----------	-----------------	--	----------	--	-------------------	--	--------------------	--	------------

External Engagement (10)	Year 1				Year 2				Ye	ear	3		Ye	ear	4		Year 5			
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
ISE Net Annual Metting																				
Researcher/ISE Meetings																				
ISE Regional meetings (3/year)																				
Award museum programming mini grants																				
Exhibit front-end study																				
NMMNHS Exhibit planning and opening																				
¡Explora! Exhibit planning and opening																				
NMNSH Exhibit planning and opening																				
Town Hall																				
EPSCoR Newsletter																				
NM EPSCoR Website revised/updated																				

Evaluation and Assessment (11)	Ye	Year 1			Ye	ear	2		Ye	ar	3		Year 4				Year 5				
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
Finalize Evaluation & Assessment (E&A) plan																					
Collect baseline data																					
External E&A Report																					
External Advisory Board meeting																					
AAAS Review																					
Exhibit evaluation																					

KEY On track Behind schedule Complete Ahead of schedule Deleted or changed Unrepo	orted
---	-------

Sustainability (12)		ear	1		Ye	ear	2		Ye	ear	3		Ye	ar	4		Year 5				
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
New faculty hires (4)																					
Teacher PD (Exploratorium)																					
ISE-led teacher workshops																					
Follow-up teacher PD																					
NSF Day																					
I-IWGs (3/year)																					
Seed Awards																					

Management (13)			Year 1				2		Ye	ear	3		Ye	ar	4		Year 5			
1: June-Aug; 2: Sept-Nov; 3: Dec-Feb; 4: Mar-May	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Strategic Plan development and review																				
Subaward fiscal training including Yr. 5 closeout																				
Component budget review																				
Annual CUP presentation																				
State Committee meetings																				
Campus visits (1/quarter)																				
Reverse site visit (estimated)																				
Annual reporting																				
Monthly team meetings																				
Quarterly collaboration meetings (2 teams/ quarter)																				
Quarterly Management Team meetings																				
All Hands Meeting																				